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Nonlinear Regression Applied to Non-Newtonian Flow 
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Abstract Modifications of the Gauss-Newton method are among 
the most widely used methods for nonlinear regression analysis. 
One such modification, which the authors found applicable to a 
wide variety of pharmaceutical systems, is described. Its applica- 
tion in describing the flow behavior of non-Newtonian systems and 
the FORTRAN 1V program utilized are presented. One of the more 
useful, accurate, and physically significant equations for describing 
non-Newtonian flow is the structure equation: F = f + qm S - 

in which F is shear stress, S is shear rate, and the other terms 
are constants. The equation was originally evaluated through the use 
of multiple regression, with the constant a assumed to be equal to 
0.001, which gave good fit to a variety of flow systems. Since the 
original equation was developed, nonlinear regression techniques 
have appeared which make it possible to examine the structure 
equation in greater detail. It was found, for example, that for dis- 
persions of a wax, consisting of a mixture of polyethoxylated higher 
fatty alcohols, in water the constant a varied from 0.013 to 0.049 
rather than remaining fixed at 0.001. Some of the original data, 
upon which the structure equation was based, were reevaluated using 
nonlinear regression analysis. These data were for suspensions of 
salicylarnide (varying concentration) in methylcellulose solutions of 
varying concentration. The constant a was found to vary from 
0.00109 to 0.00172 as the concentration of methylcellulose increased 
and was independent of salicylamide concentration. In all instances, 
allowing a to vary as an adjustable parameter gave a better fit to the 
data than assuming it to be constant at 0.001. The use of nonlinear 
regression analysis served to emphasize the usefulness of the struo 
ture equation. 
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Although nonlinear regression analysis techniques 
(1-3) have been available for a number of years, they 
have received little attention in the pharmaceutical 
sciences except for the area of pharmacokinetics (4-7). 
The techniques of nonlinear regression analysis, except 
for practical difficulties which may occasionally arise, 
should be capable of curve fitting any system that may be 
of interest to pharmaceutical scientists. The authors, for 
example, successfully applied these techniques to studies 
of protein binding, the determination of dissociation 
constants for polyprotic acids, complexation studies, 
Michaelis-Menten kinetics, and the investigation of 
rheological systems. One dramatic example of the appli- 
cation of nonlinear regression analysis was the analysis 
of one of the more useful, accurate, and physically 
significant equations for describing non-Newtonian 
flow. This equation, designated as the structure equation 
(8), is: 

F = f +- - b.e-”S (Eq. 1) 

in which F is the shear stress, S is the shear rate, and the 

Table I-Constants of Structure Equation for Dispersions of a 
Mixture of Polyethoxylated Higher Fatty Alcoholso 
in Water at 25’ 

Percent 
Wax f Tm be a 

1 25.2 0.1040 19.55 0.013 
2 41.7 0.3146 17.39 0.044 
3 110.4 0.7101 45.68 0.044 
4 232.7 1 ,0350 131 .SO 0.049 

0 Polawax (Croda). 

other terms are constants. At the time the equation was 
developed, the only manner in which it could be ana- 
lyzed was to assume a value for the constant a and treat 
the equation as a multiple-regression problem in the 
form: 

F = f + qmS - b,X (ES. 2) 

in which : 
X = e-”S (Eq. 3) 

An arbitrary value of 0.001 was found to give very 
good fit to a wide variety of systems. Data from the 
authors’ laboratories, as well as some of the data upon 
which the equation was based originally (9) l, were 
analyzed using the techniques of nonlinear regression 
analysis, in which the constant a was allowed to be an 
adjustable parameter. The results and a discussion of the 
techniques utilized are presented in this article. 

THEORETICAL 

To utilize the techniques of nonlinear regression, initial estimates, 
Plo, PzO, Pio, . . . , Pko, are needed for the k adjustable parameters, 
and correction vectors defined such that: 

PI = 9 0  - APl 

P2 = PZO - APZ 

(Eq. 4 4  

(Eq. 46) 

p k  = Pk‘ - APk (Eq. 4 4  

in which AP; represents a correction vector that will enable Pi to be a 
“better” estimate of the true parameter than PE. The function: 

in which Y is the dependent variable, Xis the independent variable, 
and P, represents the current estimate of the true parameter, is 

1 The authors are grateful to Dr: Wayne Grim for his pvmissipn io 
use the data from his doctoral thesis. All of the data on qalicylamide in 
methylcellulose referred to in this publicatlon were obtained from this 
thesis. 
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Table 11-Nonlinear Regression Analysis on 10.29 % v/v Salicylamide in 1.59% w/w Methylcellulose, 1500 Cps., Solutions 

Constant Value Standard Deviation 95% Confidence Limits 

1.348 x 103 - 1.468 x 103 

1.237 x 103 - 1.340 x 103 
1.752 x 10-3 - 2.028 x 10-3 

1.4082 X lo3 
6.3453 x 10-1 1.298 X 

1,8900 X 

3.058 X 10’ f 
9m 6, 1.2887 X lo3 2.645 X 10’ 
a 

6.091 X lo-’ - 6.600 X lo-’ 

7.037 x 
YCalculated X Percent Difference 

- 10.003 
-2.926 

Y x 10-3 
0.2846 0.2587 
0.3414 0.3317 
0.4695 0.4709 
0.6014 0.6235 
0.7377 0.7628 
0.8610 0.8756 
1.006 1.008 
1.142 1.154 
1.273 1.267 
1.403 1.393 
1. 528 1.512 
1.631 1.625 
1.725 1.711 
1.804 1.784 
1.872 1.857 
1.937 I .930 
1.994 

0.117 
1.990 

2.047 
0.586 

2 050 
2.097 

0.077 
2.109 

2.147 
0.300 

2.149 
2.196 

0.270 
2.202 
2.249 2.243 
2.295 2.285 0.415 
2.335 2.327 0.348 
2.388 2.374 0.587 
2.428 2.425 0.115 
2.467 2.466 0.068 
2.521 2.515 0.209 

2.673 2.669 0.139 

0.296 
3.552 
3.285 
1.660 
0.213 
1.009 

-0.471 
-0.700 
-1.009 
-0.393 
-0.809 
-1.088 
-0.786 
-0.350 
-0.187 

2.560 2.561 -0.039 
2.613 2.614 -0.020 

2.733 2.727 0.220 
2.773 2.778 -0.180 
2.826 2.829 -0.112 
2.865 2.867 -0.054 

2.938 2.942 -0.122 
2.912 2.907 0.178 

2.958 2.975 -0.553 

expanded in a Taylor series retaining only the first-order terms to 
give: 

Y = 

in which : 

AP1R + APzFz + AP,Fi + . . . + AP~FA. (Eq. 6)  

Fi = bY/bPi  (Eq. 7) 
A 

and Y represents the theoretical value of Y calculated from the cur- 
rent set of estimated parameters. 

Equation 6 is linear in the correction vectors and can be treated 
using the techniques of multiple regression in which Eq. 6 can be 

Table 111-Reduction in Sums of Squares of Residuals between 
Values Obtained Using Multiple Regression with a = 0.001, 
and Nonlinear Regression in Which a Was Considered an 
Adjustable Parameter. Data for Varying Concentrations of 
Salicylamide in 1.59 % w/w Methylcellulose, 1500 cps., Solutions 

Percent Salicylamide, Nonlinear 
VIV Multiple Regression Regression 

-Sums of Squares of Residuals X 

0.00 
5.40 

10.29 
14.59 
19.69 
24.21 
28.07 
34.39 

1.00 
3.65 
4.57 
4.58 
4.26 
6.49 

11.91 
24.03 

0.26 
0.37 
0.45 
0.52 
1 .oo 
0.93 
2.91 
5.41 

represented by : 

Y = alXl  + azXz + aiXi + . . . + akXk + t (Eq. 8) 

which E represents the residual for a given point. Taking the par- 
tial derivative of € 2  with respect to each AP,, setting each resulting 
equation equal to  zero to minimize the sum of squares of residuals. 
and summing over the entire set of experimental points yield a set of 
“normal equations”: 

. . .  . . .  . . .  ... 

in which: 

F =  Y - ?  (Eq. 10) 

and the subscripted Fi’s refer to  the partial derivatives as given by 
Eq. 7. The initial estimates, PIn, Pan, Pin, . . . , Pk’, are used to solve 
for F, Fl, Fz, F;, . . . , Fk at each data point: the sums of the products 
are inserted into the set of normal equations (Eqs. 9). This set of 
simultaneous equations can be solved in a wide variety of ways for 
APl, LW~, APt, . . . , APk. The Crout reduction method (10) is used 
here. These correction vectors are then substituted into Eqs. 4 to  
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Figure I-Comparison between calculated and experimental values of 
shear stress. The solid line represents the calculated values of shear 
stress, while the closed circles represent the actual experimental 
points. The system represented is 10.29% v/v salicylamide in 1.59% 
w/w methylceIluIose, 1500 cps. 

give new estimates of the parameters 5, Pz, P i , .  ... Pk, which to- 

F, Fl, Fo, Fi, .... FX for each data point. The sums of squares are 
gether with the experimental values of Y and X are used to solve for 

again tabulated, and the set of Eqs. 9 is solved for the correction 
vectors. This iterative procedure is continued until the desired degree 
of accuracy is obtained. 

Although the set of Eqs. 4 can be used successfully for fitting many 
functions, convergence may not be obtained in others. An alternate 
procedure, which converges more frequently and which is used in 
this computer program, is as follows. 

1. After each titration, correct the estimated parameters: 

(Eq. l la)  

0%. 1lb) 
(Eq. llc) 

0%. 114 

2. Calculate the sum of squares of residuals ( 2 F )  using the three 
estimates of Pl,  P1, Pt ,  .... Pk, designating SO as the result for R = 0, 

Pi = Pi' - R A P 1  

P2 = P20 - R AP, 
Pi = P,O - R AP, 
. . . . . .  . . .  
Pk = Pk' - R u k  

using values of R = 0,0.5, and 1 on each of the parameters. 

So.s for the set in which R = 0.5, and Sl as the result for R = 1.  
3. Calculate R m i n . :  

4. Now correct each parameter: 

Table IV-Differences between Constants Obtained via Multiple Regression with a = 0.001, and Nonlinear Regression in Which D 
Was Considered an Adjustable Parameter. Data for Varying Concentrations (v/v%) of Salicylamide in 1.59 % w/w 
Methylcellulose, 1500 cps., Solutions 

Percent 
Salic ylamide f 

Yield Value 
bv a X lo3 (f - bv) 

0.ooz: 
Literaturea 
This work 
Percent difference 

Literature 
This work 
Percent difference 

Literature 
This work 
Percent difference 

Literature 
This work 
Percent difference 

Literature 
This work 
Percent difference 

5.40%: 

10.29%: 

14.59%: 

19.69%: 

24.21x: 
Literature 
This work 
Percent difference 

7.8.07z: 
Literature 
This work 
Percent difference 

Literature 
This work 
Percent difference 

34.39z: 

1634.0 
1086.0 

33.5 

1981.0 
1356.0 

31.5 

2205.0 
1408.0 

36.1 

2766.0 
1736.0 

37.2 

3511 .O  
2416.0 

31.2 

3773.0 
2477.0 

34.3 

5021.0 
3333.0 

33.6 

7454.0 
4969.0 

33.3 

0.2800 
0.4638 

65.6 

0.2965 
0.5046 

70.2 

0.3624 
0.6345 

75.1 

0.3611 
0.7144 

97.8 

0.3937 
0.7579 

92.5 

0.5492 
0.9884 

80.0 

0.7281 
1.2976 

78.2 

0.9837 
1.8206 

85.1 

1507.0 
1021 .o 

32.2 

1806.0 
1248.0 

30.9 

1985.0 
1289.0 

35.1 

2509.0 
1611.0 

35.8 

3199.0 
2220.0 

30.6 

3415.0 
2271 .O  

33.5 

4528.0 
3036.0 

33.0 

6754.0 
4552.0 

32.6 

1.00 
1.72 

72.0 

1.00 
1.65 

65.0 

1 .oo 
1.89 

89.0 

1 .oo 
1.93 

93.0 

1.00 
1.64 
64.0 

1 .oo 
1.79 

79.0 

1 .OO 
1.76 

76.0 

1 .oo 
1.74 

74.0 

127.0 
65.0 
48.8 

175.0 
18.0 
38.3 

220.0 
119.0 
45.9 

257.0 
125.0 
33.2 

312.0 
196.0 
37.2 

358.0 
206.0 
42.5 

493.0 
297.0 
39.8 

700.0 
417.0 
40.4 

0 Reference 9. 
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Table V-Listing for the Main Program 

1 IMPLICIT REAL*8 (A-H,O-2) 
2 INTEGER NAME(60) 
3 COMMON/SETl/P.NAME 
4 COMMON)S~~)V(~OO),Y C A L ~  ioo),x(iOo),~( 10) 
5 DIMENSION P(10) 
6 1 READ(5,lO)NAME 
7 10 FORMAT(60Al) 
8 READ,N,NOCON,TS 
9 READ.fPfI).I-1 .NOCON) 

10 READ;(X(I),I = 1 ,N) ’ 

11 READ,(Y(I),I=N) 
12 NO = N ._ 

13 WRITE(6,15)NAME 
14 15 FORMAT(‘l’,T3,60Al,///) 
15 CALL NONLIN(NO.NOCON.TS) . ,  
16 READ.MORE 
17 GO TO(l,2O),MORE 
18 20 STOP 
19 END 

5.  Continue the iteration procedure as before. 
If the right side of the set of Eqs. 9 is replaced by the unit matrix 

(one in which all of the diagonal elements are equal to 1 and all other 
elements are equal to zero), the covariance matrix can be obtained 
by solving Eqs. 9 using each column of the unit matrix in succession. 
The diagonal elements of the covariance matrix, designated as 
v11, v22. Vtf,. . . , vkk, are used to obtain estimates of the standard 
deviation for each parameter as follows: 

VAREXT = So/(N - NOCON) (Eq. 14) 

in which VAREXT is an external estimate of the unit variance, N is 
the number of data points, and NOCON is the number of parame- 
ters being fitted. The standard deviation for each parameter is de- 
fined as follows: 

STNDVl = (Vi,.VAREXT)1/2 (Eq. 15a) 

STNDVz = (V~~.VAREXT)’/Z (Eq. 156) 

STNDVi = ( V%i .VAREXT)’/z (Eq. 15c) 

It is necessary at times to evaluate a constant, for example G, 
which is a function of the adjustable parameters of a particular 
equation : 

G = f(p1, Pi, . . . , P d  0%. 16) 

in which n may be equal to or less than k, the total number of ad- 
justable parameters of a particularequation.Thevariance, STNDVo2, 
for G can be obtained from: 

n n-1 n 
STNDV,’ = VAREXT C V;iFiz + 2VAREXT C C X 

a =  1 i = l j = i + l  

VijFjFj (Eq. 17) 

in which Ft represents the partial derivative of G with respect to 
p i .  

An estimate of th? variance for each calculated value of the 
dependent variable, Y,  as calculated from the adjusted parameters 
can be obtained from: 

uF2 = VAREXT EViiFiz + 2 C  C VjjFiFj) (Eq. 18) 
k-1 k 

1 I i - 1  i = l  j= i+ l  

and the 95 confidence interval for ^Y would be: 

limits = i. + tv? (Eq. 19) 

ANALYSIS OF THE STRUCTURE EQUATION 

To use the computer program (Appengix), the structure equation, 
Eq. 1, has to be converted into terms of Y, X ,  and Pi: 

P = p 1  + p a x  - pae-p4x (Eq. 20) 

The appropriate partial derivatives, as described by Eq. 7, are: 

Fl = b?/bP, = 1.0 

Fz = d?/bPs = X 

F3 = b Y/bPp1 = - e-p4x 

(Eq. 21a) 

(Eq. 216) 

(Eq. 21c) 
A 

F4 = bY/bP4 = XP3e-p4x (Eq. 214  

The conversion of Eqs. 20 and 21 into the FORTRAN IV language 
used in the computer program is described in the Appendix. 

According to Eq. 1, when the shear rate approaches zero: 

F = f - 6, = yield value 0%. 22) 

The estimated variance for the yield value, which is obtained from 
parameters PI and P,  of Eq. 20, can be obtained using Eq. 17 to give: 

variance for yield value = VAREXT(V11F12 + VZZFZ~) + 
2VAREXT( Vi2FiF;) (Eq. 23) 

RESULTS AND CONCLUSIONS 

A series of dispersions, containing varying amounts of a mixture 
of polyethoxylated higher fatty alcoholsz, in water at 25 O was ana- 
lyzed using an Epprecht-Rheomat 15. Initial estimates of PI  and PZ 
in &. 20 were obtained from the approximately linear portion of the 
plot of shear stress versus shear rate. The standard “feathering” 
technique was used to obtain initial estimates of Pa and P4. The data 
were analyzed using the computer program given in the Appendix on 
an IBM 360-75 system using the WATFOR compiler. The results are 
shown in Table I. The initial estimated parameters differed from 
the final adjusted parameters by 3Ck50x in all instances. Since the 
values of the constant a of Eq. 1 were 13-49 times greater than the 
value of 0.001, the data of Grim (9) were reanalyzed in an effort to 
determine whether the wax dispersions showed abnormal behavior 
or whether the nonlinear regression analysis was indeed indicating 
that the constant a was capable of being treated as an adjustable 
parameter. 

The results for a typical set of data are shown in Table 11, which 
was adapted from the computer printout. The same set of data is 
shown in Fig. 1 in an effort to demonstrate the close agreement 
between the theoretical line drawn from the computer-adjusted 
constants and the experimental data, In a least-squares regression 
analysis, the line giving the best fit to a set of experimental data is 
that line for which the sum of squares of residuals, SS, is a minimum 
in which: 

SS = Z ( Y  - f y  (Eq. 24) 

and ^Y represents the theoretical value of Y, calculated from the ad- 
justed parameters obtained in the least-squares analysis, and the 
experimental values of X. The structure equation, Eq. 1, was used to 
calculate the SS for the set of data represented in Table 11, using the 
constants obtained by multiple regression (9) and those obtained by 
nonlinear regression analysis, respectively. It was found that the SS 
obtained using nonlinear regression analysis was 32.6 x lower than 
the SS obtained using multiple regression and assuming a equal to 
0.001. 

Table 111 shows the marked reduction in SS for a series containing 
varying amounts of salicylamide suspended in 1.59% w/w methyl- 
cellulose, 1500 cps. It should be noted that both sets of constants, 
that obtained assuming a was equal to 0.001 and that obtained with 
nonlinear regression analysis, gave good fit to the expeimental data. 
The nonlinear regression analysis simply expands the inherent use- 
fulness of the structure equation by now allowing it to be analyzed in 
such a manner as to take full advantage of its ability to fit non- 
Newtonian flow data. The differences obtained between the con- 
stants obtained using both techniques for the set of data shown in 
Table 111 are shown in Table IV. Although the values of the con- 
stants changed markedly in some instances, the overall conclusions 
initially drawn (9) as to effects of concentration, efc., on the con- 
stants are fully substantiated, with an even greater degree of con- 

* Polawax (Croda). 
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Table W-Necessary Input Data; This Program Uses Unformatted Input 
~~ ~~~ 

Input Reference 
Record Line Number Input Variable 

1 
2 8 N = number of data points 

3 
4 
5 
6 

6 NAME = any 60 characters for identification of the problem 

NOCON = number of constants to be fitted 
TS = Student’s t for N - NOCON degrees of freedom 
P(1) = initial estimates of constants PI . . . PNOCON 
X(1) = independent variable. Enter XI, XZ . . . , XN 
Y(1) = dependent variable. Enter Y1, Y2 . . . , YN 
MORE = code for running more than one set of data. 

Enter 1 if you wish to run another set, and 
the number 2 if you wish to stop. 

9 
10 
11 
16 

Table VIL-Input Program in Which Raw Data Are Transformed into the Master Variables for Curve Fitting and in Which the 
Initial Estimates of the Constants Are Taken from the Raw Data 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

1 
10 

20 

30 

40 

45 
50 

60 

70 

80 

IMPLICIT REAL*8 (A-H,O-Z) 
INTEGER NAME(60) 
COMMON/SETl/P,NAME 
COMMON/SETZ/Y( 100),YCALC( lOO),X( I OO),F( 10) 
DIMENSION P(l0) 
READ(5,lO)NAME 
FORMAT(60A 1) 
READ,N,NOCON,TS 
READ,TAU,ATAU,P(4) 
READ,(X(I),I=I,N) 
READ,(Y(I),I=l,N) 
DO 20 I = l ,N 
X(I) = ATAU*X(I) 
YU) = TAU*Y(I) 
CONTINUE 
P(2) = (Y(N)-Y(N-l))/(X(N)-X(N-I)) 
P(1) = Y(N)-P(2)*X(N) 
P(3) = P( 1) - (Y( l)-(Y(2)-Y( l))/(X(2)-X( 1 ))/(X(2)-X( l))*X( 
WRITE( 6,30)NAME 
FORMAT( ’1 ’,T3,60Al,///) 
WRITE( 6,40) 
FORMAT(SX.’SHEAR STRESS’SX. ’SHEAR RATE‘./) 
DO 50 I = 1.N 
WRITE(6,45jY(I),X(I) 
FORMAT( 5X,lPD10.3,12X,DlO. 3) 
CONTINUE 
WRlTE(6,60) 
FORMAT(//SX,’INITIAL ESTIMATES OF CON. FOR STRUCTURE EQUATION ‘/) 
WRITE(6,70)(P(I),I = 1,NOCON) 
FORMAT(5X,’F= ‘,lPD12,5,2X,’ETA INF; = ’,D12.5,2X,’BV= ’,D12.5, 
*2X, ’A = ’,D14.7,//) 
NO = N 
CALL NONLIN(N,NOCON,TS) 
READ,MORE 
GO TO(1.80LMORE . ,  I 
STOP 
END 

fidence using the nonlinear regression estimates for the parameters of 
the structure equation. 

In summary, the structure equation was found to give excellent fit 
to a variety of systems, and a nonlinear regression analysis of the 
equation showed that the constant a of Eq. 1 is an adjustable 
parameter. In systems containing varying amounts of salicylamide 
suspended in solutions of varying concentrations of methylcellulose, 
the constant a varied from 0.00109 to 0.00172 as the w/w% of 
methylcellulose increased, but it seemed to be relatively insensitive 
to  changes in salicylamide concentration. The full physical signifi- 
cance of the constant a cannot be ascertained at this time, due to the 
relatively small amount of data analyzed. Studies are in progress to 
determine the rheological significance and potential usefulness of 
this parameter. 

APPENDIX 

The double-precision FORTRAN IV program for nonlinear regres- 
sion analysis developed by the authors has proven to  be easy to use, 
readily adaptable to a number of digital computer systems (IBM 
3W75, Sigma 7, and Burroughs 5500), and rather inexpensive. 
Although the cost of running the program will vary from system to 

system, the IBM 360-75 system3 will run five sets of data, each with 
3&50 experimental points, for a total cost of about $0.55 if the 
WATFOR compiler is used. The exact same material will cost 
approximately $0.85 using the G level standard compiler. The 
entire nonlinear regression analysis program is written in three 
sections. The only section that needs revision from problem to 
problem is the third section, a subroutine called FUNC. 
Main Program-This program is used for entering all of the re- 

quired data. The basic routine is shown in Table v. The line num- 
bers on the extreme left of the listing are not part of the program 
per se but are included as reference points into the program. The 
necessary input data are described in Table VI. This basic program 
can be readily modified to manipulate input data into master vari- 
ables for the curve-fitting procedure; it may be used to obtain ini- 
tial estimates for some or all of the parameters to be fitted; and 
it may be modiried to include additional printout of information. 

The modification statements would normally be placed between 
lines 12 and 13 of the basic routine. One such modification that the 
authors currently are using for evaluation of the structure equation 

~~ 

3 At the University of Pennsylvania. 

Vol. 60, No. 9, September 1971 0 1397 



Table VIII-Listing of Subroutine NONLJN 

1.000 
2.000 
3.000 
4.000 
5.000 
6.000 
7.000 
8.000 
9.000 

10.000 
11.000 
12.000 
13.000 
14.000 
15.000 
16.000 
17.000 
18.000 
19.000 
20.000 
21.000 
22.000 
23.000 
24.000 
25.000 
26.000 
27.000 
28.000 
29.000 
30.000 
31.000 
32.000 
33.000 
34.000 
35.000 
36.000 
37.000 
38.000 
39.000 
40.000 
41.000 
42.000 
43.000 
44.000 
45.000 
46.000 
47.000 
48.000 
49.000 
50.000 
51.000 
52.000 
53.000 
54.000 
55.000 
56.000 
57.000 
58.000 
59.000 
60.000 
61.000 
62.000 
63.000 
64.000 
65.000 
66.000 
67.000 
68.000 
69.000 
70.000 
71.000 
72.000 
73.000 
74.000 
75.000 
76.000 
77.000 
78.000 
79.000 
80.000 
81.000 
82.000 
83.000 
84.000 

SUBROUTINE NONLIN(NO,NOCON,TS) 

INTEGER NAME (60) 
DIMENSION P(10),SP(I 0),STNDV(1 0 ) , D E W 0 ) M  0,21), 

REAL*8 LOLIM(10),LOLIMY(100) 
COMMONtSETl /P,NAME 
COMMON/SET2/Y(100),YCALC(100),X(100),F(10) 
SIGMA = 0 . 0  

N = NOCON + 1 
L = NOCON + 2 

DO 10 I = 1,NOCON 
DO 10 J = 1,NUM 
A(I,J) = 0 . 0  

10 CONTINUE 
DO 30 I = 1,NOCON 
J = I + N  
A(I,J) = 1.0  

30 CONTINUE 
C CALCULATE VALUES FOR THE “A” ARRAY 

IMPLICIT REAL*8(A-H,O-Z) 

*B(10.21) V(l0,10),Ss(l0,21),PRC”U100),sYCAW100), 
*PONE(I;),PHALF(l O),HILIM(l 0),HILIMY(100) 

5 NUM = (2*NOCON)+ 1 

C INITIALIZE ARRAYS 

DO 35 I = l,NO 
CALL FUNC(I,P,N) 
DO 35 K = l,N 
DO 35 J = l,N 
A(K,J) = A(K,J) + F(K)*F(J) 

35 CONTINUE 
C CALCULATE “B” MATRIX 

SUM = 0 . 0  
DO 85 I = 1,NOCON 
DO 85 J = 1,NUM 
IF(I - J) 60,40,40 
L = J - l  

B(1,J) = A(1,J) - SUM 
GO to 80 
L = I - 1  

DO 70 K = l,L 
SUM = SUM + B(I,K)*B(K,J) 

IF(1 - J)75,55,55 
B(I,J) = (A(1,J) - SUM)/B(I,I) 

40 IF(L)65,55,65 

60 IF(L)65,75,65 
65 

70 CONTINUE 

75 
80 SUM = 0 . 0  
85 CONTINUE 
C CALCULATE CORRECTION VECTORS 

55 

DO 130 I = 1,NOCON 
J = N - I  
IF(J - NOCON)115.125.125 

115 

120 
125 

130 

135 

137 

140 
145 

150 

155 

, I  

L = J + I  
DO 120’K = L,NOCON 
SUM = SUM + B(J,K)*DEL(K) 
CONTINUE 
DEL(J) = B(J,N) - SUM 
SUM = 0.0  
CONTINUE 
DO 135 I = 1,NOCON 
PONE(1) = P(1) - DEL(1) 
PHALF(1) = P(1) - 0.5*DEUI) 
CONTINUE 
RONE = 0 . 0  
RHALF = 0 . 0  
RZERO = 0.0  
DO 137 I = l,NO 
CALL RESID(1,PHALF) 
RHALF = RHALF + F(N)*F(N) 
CALL RESID(1,PONE) 
RONE = RONE + F(N)*F(N) 
CALL RESID(1,P) 
RZERO = RZERO + F(N)*F(N) 
CONTINUE 
RMIN = 0.5 + (0.25*(RZERO - RONE))/ 

DO 145 I = 1,NOCON 
PRINT 140,I,P(I) 
FORMAT(ZX,’P(’,I2,’) = ’,1PD14.7) 
CONTINUE 
PRINT 150,RZERO 
FORMAT(ZX,’RESIDUAL = ‘,lPD14.7,//) 
IF(S1GMA - 0.0)155,160,155 
RATIO = RZERO/SIGMA 
IF(ABS(RATI0) - 0.999999) 160,185,270 

*(RONE - 2.0*RHALF + RZERO) 
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Table VII-( Continued) 

85.000 
86.000 
87.000 
88.000 
89.000 
90.000 
91.000 
92.000 
93.000 
94.000 
95.000 
96.000 
97.000 
98.000 
99.000 

100.000 
101.000 
102.000 
103.000 
104.000 
105.000 
106.000 
107.000 
108.000 
109.000 
110.000 
111.000 
112.000 
113.000 
114.000 
115.000 
116.000 
117.000 
118.000 
119.000 
120.000 
121.000 
122.000 
123.000 
124.000 

125.000 
126.000 
127.000 
128.000 
129.000 
130.000 
131.000 
132.000 
133.000 
134.000 
135.000 
136.000 
137.000 
138.000 
139.000 
140.000 
141.000 
142.000 
143.000 
144.000 
145.000 
146.000 
147.000 
148.000 
149.000 
150.000 
151.000 
152.000 
153.000 
154.000 
155.000 
156.000 
157.000 
158.000 
159.000 
160.000 
161.000 
162.000 
163.000 
164.000 
165.000 
166.000 
167.000 

a 

c SAVE ~9 MATRIX. T’ MATRIXAND ‘‘YCALC” MATRIX 
160 DO 165 I = 1,NOCON 

DO 165 J = 1,NUM 
SB(1,J) = B(1,J) 

DO 170 I = 1.NOCON 
165 CONTINUE 

SP(1) = P(1) 
170 CONTINUE 

DO 172 I -= l,NO 
SYCALC(1) = YCALC(1) 

SRZERO = RZERO 
172 CONTINUE 

C CALCULATE NEW VALUES FOR THE PARAMETERS 
DO 175 I = 1,NOCON 
P(1) = P(1) - RMIN*DEL(I) 

175 CONTINUE 
180 SIGMA = RZERO 

C CALCULATE INVERSE MATRIX 
185 

GO TO 5 

NUM = NOCON + 1 
SUM = 0.0  
DO 205 M = 1,NOCON 
KO = NUM + M  
DO 205 I = 1,NOCON 
J = N U M - I  

190 
IF(J - NOCON)190,200,200 
1. = 7 + 1 

195 
200 

S U M  ‘= 0.0 ‘ 
205 CONTINUE 
C CALCULATE STANDARD DEVIATION 

VAREXT = RZERO/(FLOAT(NO) 
DO 210 I = 1,NOCON 

ON EACH PARAMETER 
- FLOAT(NOC0N)) 

J = I  
STNDV(1) = DSQRT(V(I,J)*VAREXT) 

PRINT 21 1, NAME 
210 CONTINUE 

21 5 

C CALCULATE AND PRINT CONFIDENCE LIMITS 

FORMAT(///,T3, ’CONSTANT NO. ‘,T18, ’STNDRD . DEV. ’, 
*T32,’95z LOW LIM.’,T47,’95% HI LIM.’) 

DO 225 I = 1,NOCON 
ABLE = TS*STNDV(I) 

, ,  

*Dl0.3.T47.Dl.0.3)’ ‘ 

PRINT 230,RZERO 

PRINT 235,VAREXT 
230 FORMAT(///,’ RESIDUAL = ’,lX,lPD14.7) 

235 FORMAT(////,‘ VAREXT = ’,lX,lPD14.7) 
C CALCULATE CONFIDENCE LIMITS ON YCALC 

DO 250 I = 1.NO 
CALL ‘FUNC(I,P~N) 
SUMl = 0.0  
SUM2 = 0.0 
DO 240 L = 1.NOCON 
J = L  
SUMl = SUMl + V(L,J)*F(L)**Z 

KO = NOCON - 1 
DO 245 L = l,KO 
M = T . - I - l  

240 CONTINUE 

DO 245 .i M,NOCON 
SUM2 = SUM2 + Z.O*(V(L.J))*F(L)*F(J) . ~ ,., . , . ,  

245 CONTINUE 
BAKER = DABS(VAREXT*(SUMl*SUMZ)) 
DOG = TS*DSQRT(BAKER) 
HILIMY(1) = SYCALC(1) + DOG 
LOLIMY(1) = SYCALC(1) - DOG 
DIF = Y(1) - SYCALC(1) 
PRCNTU) = (DIF/Y(I)I*l00.0 . . . ,  

250 CONTINUE 
PRJNT 255 

255 
- _. 

FORMAT(///,T6,‘Y ‘,Tl5,‘YCAP’,T27,’z DIFF.’, 
*T39,’LOLIM‘,TS0,’HILIM‘) 
I_ --- - 
PRINT 260,’ 

*HILIMY(I) 

nn 365 T =  NO \ 

Y(I),SYCALC(I),PRCNT(I),LOLIMY(I), 

(Continued) 
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Table WI--( Continued) 

FORMAT(T2,1PDl0.3,2X,D10.3,2X,D10.3,2X,D10.3, 
260 *2X,D10.3) 

C CALCULATE AND PRINT THE CORRELATION COEFFICIENT 

168.000 
169.000 
170.000 265 CONTINUE 
171.000 
172.000 SUMY = 0 .0  
173.000 . DO 267 I = l,NO 
174.000 267 SUMY = SUMY + Y(I)**2 
175.000 
176.000 
177.000 

179.000 

181.000 
182.000 
183.000 PRINT 271,I,J,V(I,J) 
184.000 271 FORMAT(2X,’V(’,Il,‘,’,Il,‘) = ‘,2X,lPD14.7) 
185.000 269 CONTINUE 
186.000 GO TO 285 
187.000 
188.000 270 IF(S1GMA - RZER0)272,185,185 
189.000 272 NUM = (2*NOCON) + 1 
190.000 
191.000 
192.000 B(1,J) = SB(1,J) 
193.000 275 CONTINUE 
194.000 

196.000 280 CONTINUE 
197.000 RZERO = SRZERO 
198.000 GO TO 185 
199.000 285 RETURN 
200.000 END 

R2 = (SUMY - RZERO)/SUMY 
R = DSQRT(R2) 
PRINT 268, R2,R 

*’R =‘,lX,D12.3,//) 
178.000 268 FORMAT(///,T3,’R SQUARED = ‘,1X,D12.3,3X, 

180.000 C PRINT THE CO-VARIANCE MATRIX 
DO 269 I = 1,NOCON 
DO 269 J = 1,NOCON 

C RECALL “B’ MATRIX AND “P” ARRAY FROM STORAGE 

DO 275 I = 1,NOCON 
DO 275 J = 1,NUM 

DO 280 I = 1,NOCON 
195.000 P(1) = SP(1) 

a At this point the following two lines should be added: 
125.000 211 FORMAT (///,T3,6OAl;//) 
126.000 PRINT 215 

All subsequent lines should then be renumbered. 

is given in Table VII. Instead of inputting initial estimates of the 
parameters in reference line 9, the variables TAU and ATAU are 
input, along with an estimate of P (4) which corresponds to the 
constant a of Eq. 1. The variables TAU and ATAU are used to 
convert the rheometer readings into shear stress and shear rate, 
respectively. This is done in reference lines 12-15. Initial esti- 
mates of the constants PI ,  P2, and P a  of Eq. 20 are obtained in 
lines 16-18. Reference lines 21-35 are used for printing out addi- 
tional information generally not included in the basic program. 

Subroutine NONLIN-This subroutine is used for the actual 
curve-fitting procedure and is shown in Table VIII. It does not have 
to be altered and remains constant regardless of the function to be 
analyzed. It does call the subroutine FUNC, which must be defined 
for each function that is to be analyzed. 

Subroutine FUNC-This subroutine calculates the values of the 
partial derivatives, as defined in Eq. 7, for each set of experimental 
data points. The listing of this subroutine is given in Table IX. 
Reference lines 1-4 should remain unchanged from function to 
function. The statement immediately following the statement on 
reference line 9 must contain the definition for YCALC (that is, the 
function to be fitted must be defined mathematically). The partial 
derivatives of YCALC with respect to PI,  P2, etc., are defined 
starting with reference line 5 .  This particular listing for subroutine 

Table IX-Program Listing for Subroutine FUNC, Which 
Converts Eqs. 18 and 19 into Computer Language 

1 SUBROUTINE FUNC(I,P,N) 

3 COMMON/SET2/Y(lOO),YCALC(l~),X( 100),F( 10) 
4 DIMENSION P(10) 

2 IMPLICIT REAL*8 (A-H,O-Z) 

. ,  
5 F(l) = 1.0 
6 F(2) = X(1) 
7 F(3) = -DEXP(-P(4)*X(I)) 
8 F(4) = X(I)*P(3)*DEXP(-P(4)*X(I)) 
9 ENTRY RESID(1,P) 

10 
11 

YCALC(1) = P(1) + P(2)*X(I) - P(3)*DEXP(-P(4)*X(I)) 
F(N) = Y(1) - YCALC(1) 

12 RETURN 
13 END 

N, NOCON, TS, Pi . . . Pk, 
experimental values of 
X and Y z11 NO = N 

Initialize “A” array to zero. 
Set the unit matrix by placing 
the number 1 . O  in elements 
I = 1 to NOCON and J = I + N 

1 

.1 
DO 35 I = l,NO 
Evaluate Fl . . . FNOCON 

Obtain the sums of products for 
the set of normal equations 
A(K,J) = A(K,J) + F(K)*F(J) 
in which K and J go from 
1 to NOCON + 1 

.1 
1 

CONTINUE 

Crout reduction to solve the set 
of normal equations 
DO 85 I = 1,NOCON 
DO 85 J = 1,(2*NOCON 4- 1) 

1 
J. 

Scheme I-Flow Diagram for Subroutine NONLIN 
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J - 1  
B(1,J) = A(I,J) - c B(I,K)*B(K,J) 

K =  1 
in which it is assumed that any sum whose 
lower limit exceeds its upper limit is equal 
to zero 

W 
1-1 

(. K = l  
B(I,J) = A(I,J) - C 
in which it is assumed that any sum whose 
lower limit exceeds its upper limit is equal 
to zero 

CONTINUE 

G 
Calculate correction vectors 
DO 130 I = 1,NOCON 
J = N - I  

NOCON 

K = J + l  
DEL(J) = B(J,N) - B(J,K)*DEL(K) 

in which it is assumed that any sum whose 
lower limit exceeds its upper limit is equal 
to zero 

J, 
CONTINUE 

@-+--I+ 
Calculate the sum of squares of residuals So.6 
using the new estimates of 

Pi = Pio - O.S_DEL(I) 

Calculate the sum of squares of residuals S1 
using the new estimates of 

Pi = Pio - DEL(1) 
s, = Z(Y - .i)Z 

I Calculate the sum of squares of residuals So I 
I using Pi = Pi0 I 

Calculate the ratio of the current So to 
the previous So 

-4 

Save the "B' matrix, current s:t of 
PI . . . PNOCON, and the set of Y used to 
calculate the current So 

I 
Pi = P I o  - Rmin.DEL(I) 

Print PI . . . PNOCON and So 

~ 

Evaluate the covariance matrix 
DO 205 M = 1,NOCON 
KO = NOCON + 1 + M 
DO 205 I = 1,NOCON 
J = NOCON + 1 - I 

NOCON 

K = J + l  
V(J,M) = B(J,KO) - c B(J,K)*V(K,M 

in which it is assumed that any sum whose 
lower limit exceeds its upper limit is 
eaual to zero 

@-+-, CONTINUE 

Calculate the standard deviation 
for each parameter 
DO2101 = 1,NOCON 

STNDV(I) = SQRT(V(I,J)* VAR EXT) 

@--+ CONTINUE 

Calculate and print the confidence limits of 
each parameter 
DO 225 I = I,NOCON 
HILlM(1) = P(1) + TS*STNDV(I) 
LOLlM(1) = P(l) - TS*STNDV(I) 

1 
.1 
J, 

CONTINUE 

Print SO and VAREXT 

Calculate the 95 % confidence limits on Y 
DO 250 I = 1,NO 
Calculate F, . . . FN(EON 
Evaluate Eq. 18 
Evaluate Eq. 19 
DIF(1) = Y(I) - $(I) 
PRCNT(1) = (DIF(I)/Y(I))*IOO.O 

Scheme I--(Continued) 
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Print Y, 9, PRCNT(I), and 95% confidence 
limits on Y 

J 
Calculate and print the coefficient of 
determination, R2, and the coefficient of 
correlation, R 

R = SQRT(R2) 
R2 = (ZY - Sa)/ZY 

Print the covariance matrix I 
A 

previous So ‘? 

-@ YES 

4 1 Recall the saved “B’ matrix and PI . . . PNOCON I 

RETURN 

Scheme I-(Continued) 

FUNC shows the appropriate definitions for the structure equation 
and converts Eqs. 20 and 21 into computer language. 

Computer Printout-The first set of printout data gives the esti- 
mates of each parameter and the sum of squares of residuals for 
each iteration. When the iteration process is satisfied, the printout 
skips to the next page and prints the title of the problem, the final 
value for each constant, the estimated standard deviation for each 
constant, and the 95% confidence interval for each constant. 

The next section of printout gives the final sum of squares of 
residuals and the estimate of the unit variance, VAREXT. This 
section is followed by one which gives the experimental and calcu- 
lated values for the dependent variable (in this instance, shear 
stress), the relative difference between the two, and the 95 % 
confidence interval for the calculated values. This section is followed 
by an estimate of the coefficient of determination, which gives the 
fraction of the variance accounted for by regression, and the cor- 
relation coefficient. 

The final section of printout gives the elements of the covariance 
matrix. These elements are useful for determining the variance on 
any constant that is a function of the parameters adjusted through 
the nonlinear regression analysis (Eqs. 16 and 17). 

A flow diagram for the subroutine NONLIN as presented in this 
article is given in Scheme I. This should prove useful in the event 
modifications are needed for a particular computer system. 
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