Nonlinear Regression Applied to Non-Newtonian Flow

PAUL J. NIEBERGALL, ROGER L. SCHNAARE, and EDWIN T. SUGITA

Abstract

Modifications of the Gauss-Newton method are among the most widely used methods for nonlinear regression analysis. One such modification, which the authors found applicable to a wide variety of pharmaceutical systems, is described. Its application in describing the flow behavior of non-Newtonian systems and the Fortran IV program utilized are presented. One of the more useful, accurate, and physically significant equations for describing non-Newtonian flow is the structure equation: $F=f+\eta_{\infty} S$ $b_{v} e^{-a S}$, in which F is shear stress, S is shear rate, and the other terms are constants. The equation was originally evaluated through the use of multiple regression, with the constant a assumed to be equal to 0.001 , which gave good fit to a variety of flow systems. Since the original equation was developed, nonlinear regression techniques have appeared which make it possible to examine the structure equation in greater detail. It was found, for example, that for dispersions of a wax, consisting of a mixture of polyethoxylated higher fatty alcohols, in water the constant a varied from 0.013 to 0.049 rather than remaining fixed at 0.001 . Some of the original data, upon which the structure equation was based, were reevaluated using nonlinear regression analysis. These data were for suspensions of salicylamide (varying concentration) in methylcellulose solutions of varying concentration. The constant a was found to vary from 0.00109 to 0.00172 as the concentration of methylcellulose increased and was independent of salicylamide concentration. In all instances, allowing a to vary as an adjustable parameter gave a better fit to the data than assuming it to be constant at 0.001 . The use of nonlinear regression analysis served to emphasize the usefulness of the structure equation.

Keyphrases \square Regression analysis, nonlinear-non-Newtonian flow systems \square Non-Newtonian flow systems-application of nonlinear regression analysis \square NONLIN, subroutine-digital computer program \square Digital computer programs-subroutine NONLIN

Although nonlinear regression analysis techniques (1-3) have been available for a number of years, they have received little attention in the pharmaceutical sciences except for the area of pharmacokinetics (4-7). The techniques of nonlinear regression analysis, except for practical difficulties which may occasionally arise, should be capable of curve fitting any system that may be of interest to pharmaceutical scientists. The authors, for example, successfully applied these techniques to studies of protein binding, the determination of dissociation constants for polyprotic acids, complexation studies, Michaelis-Menten kinetics, and the investigation of rheological systems. One dramatic example of the application of nonlinear regression analysis was the analysis of one of the more useful, accurate, and physically significant equations for describing non-Newtonian flow. This equation, designated as the structure equation (8), is:

$$
\begin{equation*}
F=f+\eta_{\infty} S-b_{v} e^{-a S} \tag{Eq.1}
\end{equation*}
$$

in which F is the shear stress, S is the shear rate, and the

Table I-Constants of Structure Equation for Dispersions of a Mixture of Polyethoxylated Higher Fatty Alcohols ${ }^{a}$ in Water at 25°

Percent Wax	f			
1	25.2	0.1040	19	a
2	41.7	0.3146	17.55	0.013
3	110.4	0.7101	45.68	0.044
4	232.7	1.0350	131.80	0.044

a Polawax (Croda).
other terms are constants. At the time the equation was developed, the only manner in which it could be analyzed was to assume a value for the constant a and treat the equation as a multiple-regression problem in the form:

$$
\begin{equation*}
F=f+\eta_{\infty} S-b_{v} X \tag{Eq.2}
\end{equation*}
$$

in which:

$$
\begin{equation*}
X=e^{-a S} \tag{Eq.3}
\end{equation*}
$$

An arbitrary value of 0.001 was found to give very good fit to a wide variety of systems. Data from the authors' laboratories, as well as some of the data upon which the equation was based originally (9) ${ }^{1}$, were analyzed using the techniques of nonlinear regression analysis, in which the constant a was allowed to be an adjustable parameter. The results and a discussion of the techniques utilized are presented in this article.

THEORETICAL

To utilize the techniques of nonlinear regression, initial estimates, $\boldsymbol{P}_{1}{ }^{\mathbf{0}}, \boldsymbol{P}_{\mathbf{z}^{0}}, \boldsymbol{P}_{i}{ }^{0}, \ldots, \boldsymbol{P}_{k^{0}}{ }^{0}$, are needed for the k adjustable parameters, and correction vectors defined such that:

$$
\begin{align*}
& \boldsymbol{P}_{1}=\boldsymbol{P}_{1}{ }^{0}-\Delta \boldsymbol{P}_{1} \\
& \boldsymbol{P}_{2}=\boldsymbol{P}_{2}{ }^{0}-\Delta \boldsymbol{P}_{2} \\
& \vdots \\
& \vdots
\end{align*}
$$

in which ΔP_{i} represents a correction vector that will enable P_{i} to be a "better" estimate of the true parameter than $P_{i}{ }^{0}$. The function:

$$
\begin{equation*}
Y=f\left(X ; P_{1}, P_{2}, P_{i}, \ldots, P_{k}\right) \tag{Eq.5}
\end{equation*}
$$

in which Y is the dependent variable, X is the independent variable, and P_{i} represents the current estimate of the true parameter, is

[^0]Table II-Nonlinear Regression Analysis on $10.29 \% \mathrm{v} / \mathrm{v}$ Salicylamide in $1.59 \% \mathrm{w} / \mathrm{w}$ Methylcellulose, 1500 cps ., Solutions

Constant	Value	Standard Deviation	95\% Confidence Limits
f	1.4082×10^{3}	3.058×10^{1}	
η_{∞}	6.3453×10^{-1}	1.298×10^{-2}	$6.091 \times 10^{-1}-6.600 \times 10^{-1}$
b_{0}	1.2887×10^{3}	2.645×10^{1} 7.037×10^{-5}	$1.237 \times 10^{3}-1.340 \times 10^{3}$ $1.752 \times 10^{-3}-2.028 \times 10^{-3}$
a	1.8900×10^{-3}	7.037×10^{-5}	$1.752 \times 10^{-3}-2.028 \times 10^{-3}$
$Y \times 10^{-3}$	Y Calculated $\times 10^{-3}$		Percent Difference
0.2587	0.2846		-10.003
0.3317	0.3414		-2.926
0.4709	0.4695		0.296
0.6235	0.6014		3.552
0.7628	0.7377		3. 285
0.8756	0.73770.8610		1. 660
1.008	1.006		0.213
1.154	1.142		1.009
1. 267	1.273		-0.471
1.393	1.403		-0.700
1.512	1.528		-1.009
1.625	1.631		-0.393
1.711	1.725		-0.809
1.784	1.804		-1.088
1.857	1.872		-0.786
1.930	1.937		-0.350
1.990	1.994		-0.187
2.050	2.047		0.117
2.109	2.097		0.586
2.149	2.147		0.077
2.202	2.1472.196		0.300
2.249	2.243		0.270
2.295	2.285		0.415
2.335	2.327		0.348
2.388	2.374		0.587
2.428	2.425		0.115
2.467	2.466		0.068
2.521	2.515		0.209
2.560	2.561		-0.039
2.613	2.614		-0.020
2.673	2.669		0.139
2.733	2.727		0.220
2.773	2.778		-0.180
2.826	2.829		-0.112
2.865	2.867		-0.054
2.912	2.907		0.178
2.938	2.942		-0.122
2.958	2.975		-0.553

expanded in a Taylor series retaining only the first-order terms to give:

$$
\begin{equation*}
Y=\hat{Y}+\Delta P_{1} F_{1}+\Delta P_{2} F_{2}+\Delta P_{i} F_{i}+\ldots+\Delta P_{k} F_{k} \tag{Eq.6}
\end{equation*}
$$ in which:

$$
\begin{equation*}
F_{i}=\partial Y / \partial P_{i} \tag{Eq.7}
\end{equation*}
$$

and \hat{Y} represents the theoretical value of Y calculated from the current set of estimated parameters.

Equation 6 is linear in the correction vectors and can be treated using the techniques of multiple regression in which Eq. 6 can be

Table III-Reduction in Sums of Squares of Residuals between Values Obtained Using Multiple Regression with $a=0.001$, and Nonlinear Regression in Which a Was Considered an Adjustable Parameter. Data for Varying Concentrations of Salicylamide in 1.59% w/w Methylcellulose, 1500 cps ., Solutions

Percent Salicylamide, v / v	-Sums of Squares of Residuals $\times 10^{-4}-$Nultiple Regression Nonlinear Regression	
0.00	1.00	0.26
5.40	3.65	0.37
10.29	4.57	0.45
14.59	4.58	0.52
19.69	4.26	1.00
24.21	6.49	0.93
28.07	11.91	2.91
34.39	24.03	5.41

represented by:

$$
\begin{equation*}
Y=a_{1} X_{1}+a_{2} X_{2}+a_{i} X_{i}+\ldots+a_{k} X_{k}+\epsilon \tag{Eq.8}
\end{equation*}
$$

i_{1} which ϵ represents the residual for a given point. Taking the partial derivative of ϵ^{2} with respect to each ΔP_{i}, setting each resulting equation equal to zero to minimize the sum of squares of residuals, and summing over the entire set of experimental points yield a set of "normal equations":

$$
\begin{align*}
& \begin{array}{r}
\left.\left(\Sigma F_{1} F_{1}\right) \Delta P_{1}+\left(\Sigma F_{1} F_{2}\right) \Delta P_{2}+\left(\Sigma F_{1} F_{i}\right) \Delta P_{i}+\ldots \dot{F}_{1} F_{k}\right) \Delta \dot{P}_{k}=\Sigma F_{1} F
\end{array} \\
& \left.\left(\Sigma F_{2} F_{1}\right) \Delta P_{1}+\left(\Sigma F_{2} F_{2}\right) \Delta P_{2}+\left(\Sigma F_{2} F_{i}\right) \Delta P_{i}+{ }_{\left(\Sigma F_{2}\right.} F_{k}\right) \ddot{\Delta P}_{k}+\Sigma F_{2} F \\
& \left.\left(\Sigma F_{i} F_{1}\right) \Delta P_{1}+\left(\Sigma F_{i} F_{2}\right) \Delta P_{2}+\left(\Sigma F_{i} F_{i}\right) \Delta P_{i}+\ldots F_{i}+\underset{F_{k}}{ }\right) \ddot{P}_{k}=\Sigma F_{i} F \\
& \left(\Sigma F_{k} F_{1}\right) \Delta P_{1}+\left(\Sigma F_{k} F_{2}\right) \Delta P_{2}+\left(\Sigma F_{k} F_{i}\right) \Delta P_{i}+\ldots+ \\
& \left.\underset{\left(\Sigma F_{k} F_{k}\right)}{ }\right) \ddot{\Delta P}_{k}=\Sigma F_{k} F \\
& \text { (Eq. 9d) }
\end{align*}
$$

in which:

$$
\begin{equation*}
F=Y-\hat{Y} \tag{Eq.10}
\end{equation*}
$$

and the subscripted F_{i} 's refer to the partial derivatives as given by Eq. 7. The initial estimates, $P_{1}{ }^{0}, P_{2}{ }^{0}, P_{i}{ }^{0}, \ldots, P_{k}{ }^{0}$, are used to solve for $F, F_{1}, F_{2}, F_{i}, \ldots, F_{k}$ at each data point: the sums of the products are inserted into the set of normal equations (Eqs. 9). This set of simultaneous equations can be solved in a wide variety of ways for $\Delta P_{1}, \Delta P_{2}, \Delta P_{i}, \ldots, \Delta P_{k}$. The Crout reduction method (10) is used here. These correction vectors are then substituted into Eqs. 4 to

Figure 1-Comparison between calculated and experimental values of shear stress. The solid line represents the calculated values of shear stress, while the closed circles represent the actual experimental points. The system represented is 10.29% v/v salicylamide in 1.59% w / w methylcellulose, 1500 cps .
give new estimates of the parameters $P_{1}, P_{2}, P_{i}, \ldots, P_{k}$, which together with the experimental values of Y and X are used to solve for $F, F_{1}, F_{2}, F_{i}, \ldots, F_{k}$ for each data point. The sums of squares are again tabulated, and the set of Eqs. 9 is solved for the correction vectors. This iterative procedure is continued until the desired degree of accuracy is obtained.

Although the set of Eqs. 4 can be used successfully for fitting many functions, convergence may not be obtained in others. An alternate procedure, which converges more frequently and which is used in this computer program, is as follows.

1. After each titration, correct the estimated parameters:

$$
\begin{align*}
& P_{1}=P_{1}^{0}-R \Delta P_{1} \tag{Eq.11a}\\
& P_{2}=P_{2}^{0}-R \Delta P_{2} \tag{Eq.11b}\\
& P_{i}=P_{i}^{0}-R \Delta P_{i} \tag{Eq,11c}\\
& \cdots \quad \cdots \\
& P_{k}=P_{k}^{0}-R \Delta P_{k}
\end{align*}
$$

using values of $R=0,0.5$, and 1 on each of the parameters.
2. Calculate the sum of squares of residuals $\left(\Sigma F^{2}\right)$ using the three estimates of $P_{1}, P_{2}, P_{i}, \ldots, P_{k}$, designating S_{0} as the result for $R=0$, $S_{0.5}$ for the set in which $R=0.5$, and S_{1} as the result for $R=1$.
3. Calculate $R_{\text {min. }}$:

$$
\begin{equation*}
R_{\min .}=0.5+\frac{\left(S_{0}-S_{1}\right)}{4\left(S_{0}-2 S_{0.5}+S_{1}\right)} \tag{Eq.12}
\end{equation*}
$$

4. Now correct each parameter:

$$
\begin{align*}
& P_{1}=P_{1}^{0}-R_{\min .} \Delta P_{1} \tag{Eq.13a}\\
& P_{2}=P_{2}^{0}-R_{\min .} \Delta P_{2} \tag{Eq.13b}\\
& P_{i}=P_{i}^{0}-R_{\min .} \Delta P_{i} \tag{Eq.13c}\\
& \cdots \cdots \tag{Eq.13d}\\
& P_{k}=P_{k}^{0}-R_{\min .} \Delta P_{k}
\end{align*}
$$

Table IV-Differences between Constants Obtained via Multiple Regression with $a=0.001$, and Nonlinear Regression in Which a Was Considered an Adjustable Parameter. Data for Varying Concentrations ($\mathrm{v} / \mathrm{v} \%$) of Salicylamide in $1.59 \% \mathrm{w} / \mathrm{w}$ Methylcellulose, 1500 cps ., Solutions

Percent Salicylamide	f	η_{∞}	b_{v}	$a \times 10^{3}$	Yield Value $\left(f-b_{v}\right)$
0.00\%:					
Literature ${ }^{\text {a }}$	1634.0	0.2800	1507.0	1.00	127.0
This work	1086.0	0.4638	1021.0	1.72	65.0
Percent difference	33.5	65.6	32.2	72.0	48.8
5.40\%:					
Literature	1981.0	0.2965	1806.0	1.00	175.0
This work	1356.0	0.5046	1248.0	1.65	18.0
Percent difference	31.5	70.2	30.9	65.0	38.3
10.29\%:					
Literature	2205.0	0.3624	1985.0	1.00	220.0
This work	1408.0	0.6345	1289.0	1.89	119.0
Percent difference	36.1	75.1	35.1	89.0	45.9
14.59\%:					
Literature	2766.0	0.3611	2509.0	1.00	257.0
This work	1736.0	0.7144	1611.0	1.93	125.0
Percent difference	37.2	97.8	35.8	93.0	33.2
19.69\%:					
Literature	3511.0	0.3937	3199.0	1.00	312.0
This work	2416.0	0.7579	2220.0	1.64	196.0
Percent difference	31.2	92.5	30.6	64.0	37.2
24.21\%: 3773.0					
Literature	3773.0	0.5492	3415.0	1.00	358.0
This work	2477.0	0.9884	2271.0	1.79	206.0
Percent difference	34.3	80.0	33.5	79.0	42.5
28.07\%: 5021.0					
Literature	5021.0	0.7281	4528.0	1.00	493.0
This work	3333.0	1.2976	3036.0	1.76	297.0
Percent difference	33.6	78.2	33.0	76.0	39.8
34.39\%:					
Literature	7454.0	0.9837	6754.0	1.00	700.0
This work	4969.0	1.8206	4552.0	1.74	417.0
Percent difference	33.3	85.1	32.6	74.0	40.4

[^1]Table V-Listing for the Main Program

1		IMPLICIT REAL*8 (A-H,O-Z)
2		INTEGER NAME(60)
3		COMMON/SET1/P,NAME
4		COMMON/SET2/Y(100),YCALC(100),X(100),F(10)
5		DIMENSION P(10)
6	1	READ(5,10)NAME
7	10	FORMAT(60A1)
8		READ,N,NOCON,TS
9		READ,(P(I),I-1,NOCON)
10		READ,(X(I),I=1,N)
11		READ,YY(I),I=N)
12		NO=N
13		WRITE(6,15)NAME
14	15	FORMAT(',T3,60A1,///)
15		CALLNONLIN(NO,NOCON,TS)
16		READ,MORE
17		GOTO(1,20),MORE
18	20	STOP
19		END

5. Continue the iteration procedure as before.

If the right side of the set of Eqs. 9 is replaced by the unit matrix (one in which all of the diagonal elements are equal to 1 and all other elements are equal to zero), the covariance matrix can be obtained by solving Eqs. 9 using each column of the unit matrix in succession. The diagonal elements of the covariance matrix, designated as $V_{11}, V_{22}, V_{i t}, \ldots, V_{k k}$, are used to obtain estimates of the standard deviation for each parameter as follows:

$$
\begin{equation*}
\text { VAREXT }=S_{0} /(N-\mathrm{NOCON}) \tag{Eq.14}
\end{equation*}
$$

in which VAREXT is an external estimate of the unit variance, N is the number of data points, and NOCON is the number of parameters being fitted. The standard deviation for each parameter is defined as follows:

$$
\begin{align*}
& \text { STNDV }_{1}=\left(V_{11} \cdot \text { VAREXT }^{1 / 2}\right. \\
& \text { STNDV }_{2}=\left(V_{22} \cdot \text { VAREXT }^{1 / 2}\right. \\
& \text { STNDV }_{i}=\left(V_{i i} \cdot \text { VAREXT }^{1 / 2}\right. \tag{Eq.15c}
\end{align*}
$$

It is necessary at times to evaluate a constant, for example G, which is a function of the adjustable parameters of a particular equation:

$$
\begin{equation*}
G=f\left(P_{1}, P_{i}, \ldots, P_{n}\right) \tag{Eq.16}
\end{equation*}
$$

in which n may be equal to or less than k, the total number of adjustable parameters of a particular equation. The variance, STNDV ${ }_{\rho}{ }^{2}$, for G can be obtained from:

STNDV $_{g}{ }^{2}=\operatorname{VAREXT} \sum_{i=1}^{n} V_{i i} F_{i}{ }^{2}+2 V A R E X T ~ \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X$

$$
V_{i j} F_{i} F_{j} \quad \text { (Eq. 17) }
$$

in which F_{i} represents the partial derivative of G with respect to P_{i}.

An estimate of the variance for each calculated value of the dependent variable, $\hat{\boldsymbol{Y}}$, as calculated from the adjusted parameters can be obtained from:

$$
\begin{equation*}
\sigma \hat{\mathbf{Y}}^{2}=\operatorname{VAREXT}\left(\sum_{i=1}^{k} V_{i i} F_{i}{ }^{2}+2 \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} V_{i j} F_{i} F_{j}\right) \tag{Eq.18}
\end{equation*}
$$

and the 95% confidence interval for \hat{Y} would be:

$$
\begin{equation*}
\text { limits }=\hat{Y} \pm t \sigma \hat{Y} \tag{Eq.19}
\end{equation*}
$$

ANALYSIS OF THE STRUCTURE EQUATION

To use the computer program (Appendix), the structure equation, Eq. 1, has to be converted into terms of \hat{Y}, X, and P_{i} :

$$
\begin{equation*}
\hat{Y}=P_{1}+P_{2} X-P_{3} e^{-P_{4} X} \tag{Eq.20}
\end{equation*}
$$

The appropriate partial derivatives, as described by Eq. 7, are:

$$
\begin{align*}
& F_{1}=\partial \hat{Y} / \partial P_{1}=1.0 \tag{Eq.21a}\\
& F_{2}=\partial \hat{Y} / \partial P_{2}=X \\
& F_{3}=\partial \hat{Y} / \partial P_{3}=-e^{-P_{4} X} \tag{Eq.21c}\\
& F_{4}=\partial \hat{Y} / \partial P_{4}=X P_{3} e^{-P_{4} X} \tag{Eq.21d}
\end{align*}
$$

The conversion of Eqs. 20 and 21 into the Fortran IV language used in the computer program is described in the Appendix.

According to Eq. 1, when the shear rate approaches zero:

$$
\begin{equation*}
F=f-b_{v}=\text { yield value } \tag{Eq.22}
\end{equation*}
$$

The estimated variance for the yield value, which is obtained from parameters P_{1} and P_{3} of Eq. 20, can be obtained using Eq. 17 to give:
variance for yield value $=\operatorname{VAREXT}\left(V_{11} F_{1}{ }^{2}+V_{22} F_{2}{ }^{2}\right)+$
$2 \operatorname{VAREXT}\left(V_{12} F_{1} F_{2}\right)$

RESULTS AND CONCLUSIONS

A series of dispersions, containing varying amounts of a mixture of polyethoxylated higher fatty alcohols ${ }^{2}$, in water at 25° was analyzed using an Epprecht-Rheomat 15. Initial estimates of \boldsymbol{P}_{1} and $\boldsymbol{P}_{\mathbf{2}}$ in Eq. 20 were obtained from the approximately linear portion of the plot of shear stress versus shear rate. The standard "feathering" technique was used to obtain initial estimates of P_{3} and P_{4}. The data were analyzed using the computer program given in the Appendix on an IBM 360-75 system using the WATFOR compiler. The results are shown in Table I. The initial estimated parameters differed from the final adjusted parameters by $30-50 \%$ in all instances. Since the values of the constant a of Eq. 1 were 13-49 times greater than the value of 0.001 , the data of Grim (9) were reanalyzed in an effort to determine whether the wax dispersions showed abnormal behavior or whether the nonlinear regression analysis was indeed indicating that the constant a was capable of being treated as an adjustable parameter.

The results for a typical set of data are shown in Table II, which was adapted from the computer printout. The same set of data is shown in Fig. 1 in an effort to demonstrate the close agreement between the theoretical line drawn from the computer-adjusted constants and the experimental data, In a least-squares regression analysis, the line giving the best fit to a set of experimental data is that line for which the sum of squares of residuals, $S S$, is a minimum in which:

$$
\begin{equation*}
S S=\Sigma(Y-\hat{Y})^{2} \tag{Eq.24}
\end{equation*}
$$

and \hat{Y} represents the theoretical value of Y, calculated from the adjusted parameters obtained in the least-squares analysis, and the experimental values of X. The structure equation, Eq. 1, was used to calculate the $S S$ for the set of data represented in Table II, using the constants obtained by multiple regression (9) and those obtained by nonlinear regression analysis, respectively. It was found that the $S S$ obtained using nonlinear regression analysis was 32.6% lower than the $S S$ obtained using multiple regression and assuming a equal to 0.001 .

Table III shows the marked reduction in $S S$ for a series containing varying amounts of salicylamide suspended in $1.59 \% \mathrm{w} / \mathrm{w}$ methylcellulose, 1500 cps . It should be noted that both sets of constants, that obtained assuming a was equal to 0.001 and that obtained with nonlinear regression analysis, gave good fit to the expeimental data. The nonlinear regression analysis simply expands the inherent usefulness of the structure equation by now allowing it to be analyzed in such a manner as to take full advantage of its ability to fit nonNewtonian flow data. The differences obtained between the constants obtained using both techniques for the set of data shown in Table III are shown in Table IV. Although the values of the constants changed markedly in some instances, the overall conclusions initially drawn (9) as to effects of concentration, etc., on the constants are fully substantiated, with an even greater degree of con-

[^2]Table VI—Necessary Input Data; This Program Uses Unformatted Input

Input Record	Reference Line Number	Input Variable
1	6	NAME $=$ any 60 characters for identification of the problem
2	8	
		NOCON = number of constants to be fitted
		TS $=$ Student's t for $\mathbf{N}-$ NOCON degrees of freedom
		$P(I)=$ initial estimates of constants $P_{1} \ldots P_{\text {Nocon }}$
4	10	$X(I)=$ independent variable. Enter $X_{1}, X_{2} \ldots, X_{N}$
5	11	$Y(I)=$ dependent variable. Enter $Y_{1}, Y_{2} \ldots, Y_{N}$
6	16	MORE $=$ code for running more than one set of data. Enter 1 if you wish to run another set, and the number 2 if you wish to stop.

Table VII-Input Program in Which Raw Data Are Transformed into the Master Variables for Curve Fitting and in Which the Initial Estimates of the Constants Are Taken from the Raw Data

1		IMPLICIT REAL* 8 (A-H,O-Z)
2		INTEGER NAME(60)
3		COMMON/SET1/P,NAME
4		COMMON/SET2/Y(100), YCALC(100),X(100), F(10)
5		DIMENSION P(10)
6	1	READ (5,10)NAME
7	10	FORMAT(60A1)
8		READ,N,NOCON,TS
9		READ,TAU,ATAU,P(4)
10		READ, (X I$), \mathrm{I}=1, \mathrm{~N}$)
11		READ, $(\mathrm{Y}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
12		DO $20 \mathrm{I}=1, \mathrm{~N}$
13		$\mathrm{X}(\mathrm{I})=$ ATAU $^{*} \mathrm{X}(\mathrm{I})$
14		$\mathrm{Y}(\mathrm{I})=$ TAU* $\mathrm{Y}(\mathrm{I})$
15	20	CONTINUE
16		$P(2)=(\mathrm{Y}(\mathrm{N})-\mathrm{Y}(\mathrm{N}-1)) /(\mathrm{X}(\mathrm{N})-\mathrm{X}(\mathrm{N}-1))$
17		$\mathbf{P}(1)=\mathbf{Y}(\mathbf{N})-\mathbf{P}(2)^{*} \mathbf{X}(\mathbf{N})$
18		$\mathbf{P}(3)=\mathbf{P}(1)-\left(\mathrm{Y}(1)-(\mathrm{Y}(2)-\mathrm{Y}(1)) /(\mathrm{X}(2)-\mathrm{X}(1)) /(\mathrm{X}(2)-\mathrm{X}(1))^{*} \mathbf{X}(1)\right)$
19		WRITE $(6,30)$ NAME
20	30	FORMAT('1',T3,60A1,//I)
21		WRITE (6,40)
22	40	FORMAT(5X,'SHEAR STRESS',5X,'SHEAR RATE',/)
23		DO $50 \mathrm{I}=1, \mathrm{~N}$
24		WRITE(6,45)Y(1),X(L)
25	45	FORMAT(5X,1PD10.3,12X,D10.3)
30	50	CONTINUE
31		WRITE(6,60)
32	60	FORMAT(//5X,'INITIAL ESTIMATES OF CON. FOR STRUCTURE EQUATION'/)
33		WRITE(6,70)(P(I),I = 1,NOCON)
34	70	FORMAT $5 \mathrm{X}, \mathrm{F}={ }^{\prime}, 1 \mathrm{PD} 12.5,2 \mathrm{X}, \mathrm{ETA}$ INF: $=$ ',D12.5,2X, ${ }^{\prime} \mathrm{BV}={ }^{\prime}, \mathrm{D} 12.5$,
35		*2X,'A =',D14.7,//)
36		$\mathrm{NO}=\mathrm{N}$
37		CALL NONLIN(N,NOCON,TS)
38		READ,MORE
39		GO TO(1,80), MORE
40	80	STOP
41		END

fidence using the nonlinear regression estimates for the parameters of the structure equation.
In summary, the structure equation was found to give excellent fit to a variety of systems, and a nonlinear regression analysis of the equation showed that the constant a of Eq. 1 is an adjustable parameter. In systems containing varying amounts of salicylamide suspended in solutions of varying concentrations of methylcellulose, the constant a varied from 0.00109 to 0.00172 as the $w / w \%$ of methylcellulose increased, but it seemed to be relatively insensitive to changes in salicylamide concentration. The full physical significance of the constant a cannot be ascertained at this time, due to the relatively small amount of data analyzed. Studies are in progress to determine the rheological significance and potential usefulness of this parameter.

APPENDIX

The double-precision Fortran IV program for nonlinear regression analysis developed by the authors has proven to be easy to use, readily adaptable to a number of digital computer systems (IBM $360-75$, Sigma 7, and Burroughs 5500), and rather inexpensive. Although the cost of running the program will vary from system to
system, the IBM $360-75$ system 3 will run five sets of data, each with $30-50$ experimental points, for a total cost of about $\$ 0.55$ if the WATFOR compiler is used. The exact same material will cost approximately $\$ 0.85$ using the G level standard compiler. The entire nonlinear regression analysis program is written in three sections. The only section that needs revision from problem to problem is the third section, a subroutine called FUNC
Main Program-This program is used for entering all of the required data. The basic routine is shown in Table V. The line numbers on the extreme left of the listing are not part of the program per se but are included as reference points into the program. The necessary input data are described in Table VI. This basic program can be readily modified to manipulate input data into master variables for the curve-fitting procedure; it may be used to obtain initial estimates for some or all of the parameters to be fitted; and it may be moditied to include additional printout of information.
The modification statements would normally be placed between lines 12 and 13 of the basic routine. One such modification that the authors currently are using for evaluation of the structure equation

[^3]| $1 . \emptyset \emptyset \emptyset$ | | SUBROUTINE NONLIN(NO,NOCON,TS) |
| :---: | :---: | :---: |
| $2.9 \emptyset \square$ | | IMPLICIT REAL*8(A-H,O-Z) |
| 3.909 | | INTEGER NAME (60) |
| 4.000 | | DIMENSION P(1ø),SP(1ø),STNDV(1ø),DEL(1ø),A(1ø,21), |
| 5.909 | | * B(10,21),V(10,19),SB(10,21),PRCNT(1øø),SYCALC(19ø), |
| 6.009 | | *PONE(1ø),PHALF(1ø),HILIM(1ø),HILIMY(1øø) |
| $7.9 \emptyset \square$ | | REAL*8 LOLIM(1ø),LOLIMY(10ø) |
| 8.900 | | COMMON/SET1/P,NAME |
| 9.000 | | COMMON/SET $/ \mathbf{Y}(1 \emptyset \emptyset), \mathrm{YCALC}(1 \emptyset \emptyset), \mathrm{X}(1 \emptyset \emptyset), \mathrm{F}(1 \emptyset)$ |
| 10.900 | | SIGMA $=0 . \emptyset$ |
| 11.909 | 5 | NUM $=\left(2^{*} \mathrm{NOCON}\right)+1$ |
| 12.906 | | $\mathrm{N}=\mathrm{NOCON}+1$ |
| $13 . \emptyset \emptyset \square$ | | $\mathrm{L}=\mathrm{NOCON}+2$ |
| 14.090 | C IN | IALIZE ARRAYS |
| 15.090 | | DO $10 \mathrm{I}=1, \mathrm{NOCON}$ |
| 16.090 | | DO $10 \mathrm{~J}=1, \mathrm{NUM}$ |
| 17. 90.0 | | $A(1, J)=\emptyset . \emptyset$ |
| $18.9 \emptyset \square$ | 10 | CONTINUE |
| 19.900 | | DO $39 \mathrm{I}=1, \mathrm{NOCON}$ |
| 20.000 | | $\mathrm{J}=\mathrm{I}+\mathrm{N}$ |
| 21.09 | | $A(I, J)=1 . \emptyset$ |
| $22 . \emptyset \emptyset \emptyset$ | 30 | CONTINUE |
| $23.9 \emptyset \square$ | C CA | CULATE VALUES FOR THE "A" ARRAY |
| $24 . \emptyset \emptyset \square$ | | DO $35 \mathrm{I}=1$, NO |
| 25.909 | | CALL FUNC(I,P,N) |
| $26.99 \square$ | | DO $35 \mathrm{~K}=1, \mathrm{~N}$ |
| 27.006 | | DO $35 \mathrm{~J}=1, \mathrm{~N}$ |
| $28.9 \emptyset \square$ | | $A(K, J)=A(K, J)+F(K) * F(J)$ |
| 29.909 | 35 | CONTINUE |
| 30.060 | C CA | CULATE "B" MATRIX |
| 31.900 | | SUM = ¢ ¢ \emptyset |
| 32.90 | | DO $85 \mathrm{I}=1, \mathrm{NOCON}$ |
| 33.900 | | DO $85 \mathrm{~J}=1, \mathrm{NUM}$ |
| $34.9 \emptyset \emptyset$ | | IF(I - J) 60,4ø,4ø |
| 35.901 | 40 | $\mathrm{L}=\mathrm{J}-1$ |
| 36.901 | | $\mathrm{IF}(\mathrm{L}) 65,55,65$ |
| 37.901 | 55 | $\mathrm{B}(\mathrm{I}, \mathrm{J})=\mathrm{A}(\mathrm{I}, \mathrm{J})-\mathrm{SUM}$ |
| 38.906 | | GO to 80 |
| 39.909 | 60 | $\mathrm{L}=\mathrm{I}-1$ |
| 40.096 | | IF(L) $65,75,65$ |
| 41.909 | 65 | DO $70 \mathrm{~K}=1, \mathrm{~L}$ |
| 42.969 | | SUM $=$ SUM $+\mathbf{B}(\mathbf{I}, \mathrm{K})^{*} \mathbf{B}(\mathrm{~K}, \mathrm{~J})$ |
| 43.909 | 79 | CONTINUE |
| 44.909 | | IF(I - J $75,55,55$ |
| 45.901 | 75 | B(I,J) $=(\mathrm{A}(\mathrm{I}, \mathrm{J})-\mathrm{SUM}) / \mathrm{B}(\mathrm{I}, \mathrm{I})$ |
| 46.099 | 89 | SUM $=\emptyset .9$ |
| 47.090 | 85 | CONTINUE |
| 48.909 | C C | CULATE CORRECTION VECTORS |
| 49.900 | | DO $130 \mathrm{I}=1, \mathrm{NOCON}$ |
| 50.906 | | $\mathrm{J}=\mathrm{N}-\mathrm{I}$ |
| 51.960 | | IF(J - NOCON)115,125,125 |
| 52.000 | 115 | $\mathbf{L}=\mathbf{J}+1$ |
| $53.00 \square$ | | DO $120 \mathrm{~K}=\mathrm{L}, \mathrm{NOCON}$ |
| 54.009 | | SUM $=$ SUM $+\mathbf{B}(\mathbf{J}, \mathrm{K})^{*} \mathrm{DEL}(\mathrm{K})$ |
| 55.006 | 129 | CONTINUE |
| 56.090 | 125 | DEL(J) $=\mathrm{B}(\mathrm{J}, \mathrm{N})-\mathrm{SUM}$ |
| 57.090 | | SUM $=\emptyset . \emptyset$ |
| 58.090 | 130 | CONTINUE |
| $59.0 \emptyset \square$ | | DO $135 \mathrm{I}=1, \mathrm{NOCON}$ |
| $60.90 \square$ | | PONE(I) $=\mathrm{P}(\mathrm{I})-$ DEL(I$)$ |
| 61.000 | | $\operatorname{PHALF}(\mathrm{I})=\mathrm{P}(\mathrm{I})-\emptyset .5 *$ DEL($)$ |
| 62.900 | 135 | CONTINUE |
| $63.09 \square$ | | RONE $=\emptyset . \emptyset$ |
| 64.906 | | RHALF $=\emptyset . \emptyset$ |
| 65.996 | | RZERO $=\emptyset . \emptyset$ |
| $66 . \emptyset \emptyset \emptyset$ | | DO $137 \mathrm{I}=1, \mathrm{NO}$ |
| $67 . \emptyset \emptyset \emptyset$ | | CALL RESID(1,PHALF) |
| $68.9 \emptyset \emptyset$ | | RHALF $=$ RHALF $+\mathrm{F}(\mathrm{N})^{*} \mathrm{~F}(\mathrm{~N})$ |
| 69.900 | | CALL RESID(I,PONE) |
| 79.090 | | RONE $=$ RONE $+\mathrm{F}(\mathrm{N})^{*} \mathrm{~F}(\mathrm{~N})$ |
| $71.9 \emptyset \square$ | | CALL RESID(I,P) |
| $72.90 \square$ | | RZERO $=$ RZERO $+\mathrm{F}(\mathrm{N})^{*} \mathrm{~F}(\mathrm{~N})$ |
| 73.060 | 137 | CONTINUE |
| $74.90 \emptyset$ | | ${ }_{*}^{\text {RMIN }}=\emptyset .5+(\emptyset .25 *($ RZERO - RONE) $) /$ |
| 75.090 | | *(RONE - 2. 0 *RHALF + RZERO) |
| 76.909 | | DO $145 \mathrm{I}=1$, NOCON |
| 77.900 | | |
| $78.9 \square \square$ | 140 | FORMAT(2X,' ${ }^{\text {CON }}$ (',12,') $=$ ',1PD14.7) |
| $81.90 \emptyset$ | $15 \emptyset$ | FORMAT 2 X,'RESIDUAL $=$ ', 1 PD $14.7, / /$) |
| $82.90 \square$ | | IF(SIGMA - $\emptyset . \emptyset$)155,160,155 |
| $83 . \emptyset \emptyset \emptyset$ | 155 | RATIO = RZERO/SIGMA |
| 84.000 | | IF(ABS(RATIO) - Ø.999999)16ø,185,27Ø |

Table VIII-(Continued)

$85.00 \emptyset$	C SAVE "B" MATRIX, "P" MATRIX AND "YCALC" MATRIX	
$86.0 \emptyset \emptyset$	160 DO $165 \mathrm{I}=1, \mathrm{NOCON}$	
87.909	DO $165 \mathrm{~J}=1$, NUM	
88.996	$\mathrm{SB}(1, \mathrm{~J})=\mathrm{B}(\mathrm{I}, \mathrm{J})$	
$89.0 \emptyset \emptyset$	165 CONTINUE	
$90.9 \emptyset \emptyset$	DO $17 \emptyset \mathrm{I}=1, \mathrm{NOCON}$	
91.096	$\mathbf{S P}(1)=P(\mathrm{I})$	
92.096	$17 \emptyset$ CONTINUE	
93.906	DO $172 \mathrm{I}=1, \mathrm{NO}$	
94.906	SYCALC(I) $=$ YCALC(I)	
95.906	172 CONTINUE	
96.096	SRZERO = RZERO	
$97.00 \emptyset$	C CALCULATE NEW VALUES FOR THE PARAMETERS	
98.696	DO $175 \mathrm{I}=1$, NOCON	
99.696	$\mathbf{P}(\mathrm{I})=\mathbf{P}(\mathrm{I})-\mathrm{RMIN}^{*}$ DEL(I)	
100.090	175 CONTINUE	
101.000	180 SIGMA = RZERO	
$102.90 \emptyset$	GO TO 5	
103. 909	C CALCULATE INVERSE MATRIX	
194.900	185 NUM $=$ NOCON +1	
$105.90 \emptyset$	SUM $=\emptyset . \emptyset$	
106.90ø	DO $205 \mathrm{M}=1, \mathrm{NOCON}$	
197.909	$\mathrm{KO}=\mathrm{NUM}+\mathrm{M}$	
108.909	DO $205 \mathrm{I}=1, \mathrm{NOCON}$	
199.969	$\mathrm{J}=\mathrm{NUM}-\mathrm{I}$	
110.969	IF(J - NOCON)19ø,2øø,2øø	
111.090	$190 \quad \mathrm{~L}=\mathrm{J}+1$	
112.090	DO $195 \mathrm{~K}=\mathrm{L}$, NOCON	
113.909	SUM $=$ SUM + B(J,K)*V(K,M)	
114.090	195 CONTINUE	
115.096	$2 \emptyset \emptyset \quad \mathrm{~V}(\mathrm{~J}, \mathrm{M})=\mathrm{B}(\mathrm{J}, \mathrm{KO})-\mathrm{SUM}$	
116.900	SUM $=\emptyset . \emptyset$	
117.909	205 CONTINUE	
118.990	C CALCULATE STANDARD DEVIATION ON EACH PARAMETER	
119.900	VAREXT = RZERO/(FLOAT(NO) - FLOAT(NOCON))	
$120.90 \emptyset$	DO $21 \emptyset \mathrm{I}=1, \mathrm{NOCON}$	
121.000	$\mathrm{J}=\mathrm{I}$	
122.990	STNDV(I) = DSQRT(V(1,J)*VAREXT)	
123.900	210 CONTINUE	
124.909	PRINT 211, NAME	
125.909		
126.000	*T32,'95\% LOW LIM.',T47,'95\% HI LIM.')	
127.909	C CALCULATE AND PRINT CONFIDENCE LIMITS	
128.900	DO $225 \mathrm{I}=1$, NOCON	
129.909	ABLE $=$ TS ${ }^{\text {P }}$ STNDV(${ }^{\text {P }}$)	
130.960	HILIM(I) $=$ P(I$)+$ ABLE	
131.909	LOLIM (I) $=\mathrm{P}(\mathrm{I})-\mathrm{ABLE}$	
132.009	PRINT 22ø,1,P(I),STNDV(I),LOLIM(I),HILIM(I)	
133.009	$22 \emptyset$ FORMAT(T2, 1 P11,T5,1PD12.5,T19,D1ø.3,T32,	
134.909	*D1ø.3,T47,D1ø.3)	
135.900	225 CONTINUE	
136.909	230 PRINT 23@,RZERO	
137.900	230 FORMAT (/\|	,' RESIDUAL $=$ ',1X,1PD14.7)
138.0000		
149.990	C CALCULATE CONFIDENCE LIMITS ON YCALC	
141.060	DO $250 \mathrm{I}=1, \mathrm{NO}$	
142.000	CALL FUNC(I,P,N)	
143.909	SUM1 $=\emptyset . \emptyset$	
144.999	SUM2 $=\emptyset . \emptyset$	
145.900	DO $246 \mathrm{~L}=1, \mathrm{NOCON}$	
146.000	$\mathbf{J}=\mathbf{L}$	
147.909	$240 \quad$ SUM1 $=$ SUM1 $+\mathrm{V}(\mathrm{L}, \mathrm{J}) * \mathrm{~F}(\mathrm{~L})^{* *} 2$	
148.000 149.090	$240 \quad$ CONTINUE	
150.090	DO $245 \mathrm{~L}=1, \mathrm{KO}$	
151.090	$\mathrm{M}=\mathrm{L}+1$	
152.909	DO $245 \mathrm{~J}=\mathrm{M}, \mathrm{NOCON}$	
153.090	245 SUM2 = SUM2 + 2.0* ${ }^{(V)(\mathrm{L}, \mathrm{J}))^{*} \mathrm{~F}(\mathrm{~L})^{*} \mathrm{~F}(\mathrm{~J})}$	
154.000	245 CONER = DABS(VAREXT**(SUM1*SUM2))	
156.006	DOG = TS*DSQRT(BAKER)	
157.969	HILIMY(I) $=$ SYCALC(I) + DOG	
158.900	LOLIMY(I) $=$ SYCALC(I) - DOG	
159.900	DIF $=$ Y(I) - SYCALC(I)	
169.000	$250 \quad \mathrm{PRCNT}(\mathrm{I})=(\mathrm{DIF} / \mathrm{Y}(\mathrm{I}))^{*} 1 \emptyset \emptyset . \emptyset$	
161.909	250 CONTINUE	
162.900		
$\begin{aligned} & 163.009 \\ & 164.060 \end{aligned}$	255 FORMAT(/\|/,T6,'Y',T15,'YCAP',T27,'\% DIFF.', *T39, 'LOLIM', T5'ø,'HILIM')	
165.909	DO' $265 \mathrm{I}=1$ 1,NO	
166.909	PRINT 260,Y(I),SYCALC(I),PRCNT(I),LOLIMY(I),	
167.900	*HILIMY(I)	

Table VIII－（Continued）

168.000	260	FORMAT（T2，1PD1ø．3，2X，D1ø．3，2X，D1ø．3，2X，D1ø．3，
169．0日0		＊2X，D19．3）
170.000	265	CONTINUE
$171.0 \emptyset \square$	C C	CULATE AND PRINT THE CORRELATION COEFFICIENT
172.000		SUMY＝ $9 . \emptyset$
$173 . \emptyset \emptyset \emptyset$		DO $267 \mathrm{I}=1, \mathrm{NO}$
174．0日の	267	SUMY $=$ SUMY $+\mathrm{Y}(\mathrm{I})^{* *} 2$
175.090		R2＝（SUMY－RZERO）／SUMY
$176 . \emptyset \emptyset \emptyset$		R＝DSQRT（R2）
$177.0 \emptyset \square$		PRINT 268，R2，R
178．$\emptyset \emptyset \emptyset$	268	FORMAT（／／／，T3，＇R SQUARED $=$＇，1X，D12．3，3X，
$179.0 \emptyset 9$		＊＇R＝＇，1X，D12．3，／／）
$18 \emptyset . \emptyset \emptyset \emptyset$	C PR	T THE CO－VARIANCE MATRIX
181．090		DO $269 \mathrm{I}=1, \mathrm{NOCON}$
$182.09 \square$		DO $269 \mathrm{~J}=\mathrm{I}, \mathrm{NOCON}$
183．$\emptyset \emptyset \emptyset$		PRINT 271，I，J，V（I，J）
184．0日の	271	FORMAT（2X，＇V（＇，I1，＇，＇，I1，＇）＝＇，2X，1PD14．7）
185．øøø	269	CONTINUE
186.090		GO TO 285
$187.0 \emptyset \square$	C R	ALL＂B＂MATRIX AND＇＂P＂ARRAY FROM STORAGE
$188.0 \emptyset \emptyset$	270	IF（SIGMA－RZERO）272，185，185
$189 . \emptyset \emptyset \emptyset$	272	NUM $=(2 * N O C O N)+1$
$190 . \emptyset \emptyset \emptyset$		DO $275 \mathrm{I}=1, \mathrm{NOCON}$
191．0Ø0		DO $275 \mathrm{~J}=1, \mathrm{NUM}$
$192.90 \emptyset$		$\mathbf{B}(\mathbf{I}, \mathrm{J})=\mathbf{S B}(\mathrm{I}, \mathrm{J})$
193．00Ø	275	CONTINUE
194.090		DO $280 \mathrm{I}=1, \mathrm{NOCON}$
195．00 0		$\mathrm{P}(\mathrm{I})=\mathrm{SP}(\mathrm{I})$
196． $0 \emptyset \square$	$28 \emptyset$	CONTINUE
197．090		RZERO＝SRZERO
198.000		GO TO 185
199．$\emptyset \emptyset \emptyset$	285	RETURN
$20 \emptyset . \emptyset 0 \emptyset$		END

a At this point the following two lines should be added：

125．$\emptyset \emptyset \emptyset$	
$126 . \emptyset \emptyset \emptyset$	
FORMAT $(/ / /, T 3,60 A 1 ; / /)$	
PRINT 215	

All subsequent lines should then be renumbered．
is given in Table VII．Instead of inputting initial estimates of the parameters in reference line 9 ，the variables TAU and ATAU are input，along with an estimate of P（4）which corresponds to the constant a of Eq．1．The variables TAU and ATAU are used to convert the rheometer readings into shear stress and shear rate， respectively．This is done in reference lines 12－15．Initial esti－ mates of the constants P_{1}, P_{2} ，and P_{3} of Eq． 20 are obtained in lines 16－18．Reference lines $21-35$ are used for printing out addi－ tional information generally not included in the basic program．

Subroutine NONLIN－This subroutine is used for the actual curve－fitting procedure and is shown in Table VIII．It does not have to be altered and remains constant regardless of the function to be analyzed．It does call the subroutine FUNC，which must be defined for each function that is to be analyzed．

Subroutine FUNC－This subroutine calculates the values of the partial derivatives，as defined in Eq．7，for each set of experimental data points．The listing of this subroutine is given in Table IX． Reference lines 1－4 should remain unchanged from function to function．The statement immediately following the statement on reference line 9 must contain the definition for YCALC（that is，the function to be fitted must be defined mathematically）．The partial derivatives of YCALC with respect to P_{1}, P_{2} ，etc．，are defined starting with reference line 5 ．This particular listing for subroutine

Table IX－Program Listing for Subroutine FUNC，Which Converts Eqs． 18 and 19 into Computer Language

```
SUBROUTINE FUNC(I,P,N)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/SET2/Y(100),YCALC(100),X(100),F(10)
DIMENSION P(10)
F(1)=1.0
F(2)=X(I)
F(3)=- DEXP(-P(4)*X(I))
F(4)=\overline{X}(I)*P(3)*DEXP(-P(4)*X(I))
ENTRY RESID(I,P)
YCALC(1)=P(1)+P(2)*X(I) - P(3)*DEXP(-P(4)*X(I))
F(N)=Y(I) - YCALC(I)
RETURN
END
```


Scheme I－Flow Diagram for Subroutine NONLIN

Scheme 1-(Continued)

FUNC shows the appropriate definitions for the structure equation and converts Eqs. 20 and 21 into computer language.
Computer Printout--The first set of printout data gives the estimates of each parameter and the sum of squares of residuals for each iteration. When the iteration process is satisfied, the printout skips to the next page and prints the title of the problem, the final value for each constant, the estimated standard deviation for each constant, and the 95% confidence interval for each constant.

The next section of printout gives the final sum of squares of residuals and the estimate of the unit variance, VAREXT. This section is followed by one which gives the experimental and calculated values for the dependent variable (in this instance, shear stress), the relative difference between the two, and the 95% confidence interval for the calculated values. This section is followed by an estimate of the coefficient of determination, which gives the fraction of the variance accounted for by regression, and the correlation coefficient.
The final section of printout gives the elements of the covariance matrix. These elements are useful for determining the variance on any constant that is a function of the parameters adjusted through the nonlinear regression analysis (Eqs. 16 and 17).

A flow diagram for the subroutine NONLIN as presented in this article is given in Scheme I. This should prove useful in the event modifications are needed for a particular computer system.

REFERENCES

(1) W. E. Deming, "Statistical Adjustment of Data," Wiley, New York, N. Y., 1943, and Dover Publications, New York, N. Y., 1964.
(2) H. O. Hartley, Technometrics, 3, 269(1961).
(3) H. O. Hartley and A. Booker, Ann. Math. Statist., 36, 638 (1965).
(4) J. G. Wagner, Clin. Pharmacol. Ther., 8, 201(1967).
(5) J. G. Wagner and C. M. Metzler, J. Pharm. Sci., 56, 658 (1967).
(6) Ibid., 58, 87(1969).
(7) W. Lowenthal and B. L. Vitsky, J. Pharm. Sci., 56, 169(1967).
(8) R. Shangraw, W. Grim, and A. M. Mattocks, Trans. Soc. Rheol., V, 247(1961).
(9) W. Grim, "Rheology of Pharmaceutical Suspensions," Ph.D. dissertation, University of Michigan, Ann Arbor, Mich., 1959.
(10) K. L. Nielsen, "Methods in Numerical Analysis," Macmillan, New York, N. Y., 1964, pp. 185-197.

ACKNOWLEDGMENTS AND ADDRESSES

Received February 10, 1971, from the Department of Pharmacy, Philadelphia College of Pharmacy and Science, Philadelphia, PA 19104

Accepted for publication May 21, 1971.
Presented to the Basic Pharmaceutics Section, APhA Academy of Pharmaceutical Sciences, San Francisco meeting, March 1971.

[^0]: ${ }^{1}$ The authors are grateful to Dr. Wayne Grim for his permission to use the data from his doctoral thesis. All of the data on salicylamide in methylcellulose referred to in this publication were obtained from this thesis.

[^1]: a Reference 9

[^2]: ${ }^{2}$ Polawax (Croda).

[^3]: ${ }^{3}$ At the University of Pennsylvania.

